If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3.5x^2-60x+200=0
a = 3.5; b = -60; c = +200;
Δ = b2-4ac
Δ = -602-4·3.5·200
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-20\sqrt{2}}{2*3.5}=\frac{60-20\sqrt{2}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+20\sqrt{2}}{2*3.5}=\frac{60+20\sqrt{2}}{7} $
| 11x+9=7x+9 | | X2+3x=20 | | 0.02(x-10)=150 | | 40-(10/2x)=0 | | -x9/7=1-x/9 | | -6.8+4.2d=4.2 | | 6x-6=5x-2-2x | | (3/x)+6=-45 | | 2/3x+5=20−x | | x+(18/12)=(3/4)x | | 5(y+6)(-y-8)=0 | | 2x+6/4=-7 | | 4x/15-((6x+28)/5)=0 | | x/2-3=×/7+2 | | x+(4/x)=4 | | 4x/5+6x+2=3(2x+2) | | 2c+3=3c-4= | | -4(8+5n)+8=8 | | x^2+30x-29=0 | | 4x/15-(6x+28)/5=0 | | -4(8=5n)+8 | | 5/4*x+1/8*x=3/8+x | | 5/4*x+1/8*x=3/8 | | x+18/12=3/4x | | 8p+8=8+p | | (5x+4)(5x^2-12x+4)=0 | | 8x=3x-12+42 | | 1/2(x-6)^3+4=0 | | (1/2z+2)+(3+3/2)=5z+2 | | 1/2(x-6)3+4=0 | | R(r1+r2)=r1r2 | | (3x+5)-(4x-8)=9 |